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Summary. The recently proposed consistent generalization of the Moller-Plesset 
(MP) perturbation theory for arbitrary open-shell and multiconfigurational 
reference states is formulated and described in detail for a simple two-configura- 
tional (TC) SCF wavefunction. The problem of non-diagonality of H ° is 
discussed. Dynamical correlation contributions to the energy, dissociation en- 
ergy, and dipole moment of HF are analyzed in terms of different types of 
excitations. 
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1. Introduction 

It has been recognized that the many-body perturbation theory (MB PT) [1, 2] 
provides the most efficient treatment of dynamical electron correlation in 
molecules. Usually, the first few orders of MBPT are enough to recover the most 
significant part of the correlation energy. The efficiency of this approach arises 
from the consistent neglect of higher-order contributions which are present in 
configuration interaction (CI) and coupled cluster (CC) methods. The latter 
include some contributions through infinite order and usually require about 10 
iterations for convergence if any DIIS-type of acceleration is used [3]. On the 
other hand, from the point of view of numerical effort, the perturbational 
approach up to the third order corresponds to one CI iteration. It makes second- 
and third-order perturbation theory roughly an order of magnitude more 
efficient than both CI and CC methods. For this reason the perturbation theory 
is applicable to much larger systems than more accurate CI and CC methods. 

Applicability of the perturbation theory to the electron correlation problem 
has been known for a long time [4]. However, its acceptance was slow. Major 
objection against the use of perturbational approach resulted from the absence 
of the upper-bound property. According to the modern view, the upper-bound 
property is less important than the size consistency [2, 5, 6] or more properly size 
extensivity [7]. The latter is rauch easier to be achieved in perturbational 
methods than in variational ones. After it was realized, the perturbational 
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techniques became very popular and widely used, mainly due to the systematic 
studies of Bartlett and Silver [1] and Pople's group [2, 8]. 

The most important step in formulating a perturbational method is the 
proper choice of the zeroth-order Hamiltonian H °. It determines the convergence 
of the perturbation expansion and degree of numerical complexity. Thus, H ° 
besides modeling the full Hamiltonian weil, should be also a simple, uniquely 
defined one-electron-type operator. It is also very important to define H ° 
depending on the reference wavefunction 7 j° alone, but not on the particular 
orbital representation of 7 ~°. 

Arbitrariness in partitioning of the full Hamiltonian causes the problem that 
a number of H ° operators can be defined, leading fo various versions of 
perturbational methods. Without any formal criteria for their performance, the 
only possible verification can be based on test calculations. 

For the closed-shell systems the best results have been obtained with the 
Moller-Plesset (MP) partitioning [4]. In this approach the zeroth-order Hamil- 
tonian is the sum of the one-electron Fock operators. All attempts to modify it 
have not been successful [9-12]. 

The MP perturbation theory can be formulated for both the restricted 
Hartree-Fock (RHF) closed-shell and unrestricted Hartree-Fock (UHF) wave- 
functions [2, 13]. These two MP perturbational methods are often called RHF 
MP and UHF MP, respectively. Distinction between both methods is very 
important, since their behavior is significantly different [14-19]. In the case of 
the UHF MP method there is a spin contamination problem which reflects 
quasi-degeneracy of the reference state. Shortly, the UHF MP method allows to 
treat open-shell states but it does not solve the quasi-degeneracy problem. 
Moreover, the UHF MP method is much more expensive than the RHF MP 
because of approximately double number of the orbitals [20]. At the end, an 
additional computational effort is wasted, since most of the UHF orbitals are 
very weil paired in corresponding orbitals [21]. 

The spin contamination problem in the UHF MP method may be partially 
solved by using projection techniques [22]. Very recently, the new promising 
approach has been proposed [23]. It is based on a certain spin-constraint within 
the UHF theory (SUHF) which introduces an additional parameter (Lagrange 
multiplier) responsible for the final spin expectation value. When this multiplier 
varies from zero to infinity the SUHF solution goes from the UHF to ROHF 
(restricted open-shell HF) wavefunction [23]. The MP perturbation theory may 
be formulated for the SUHF reference as weil as for the UHF one. With a large 
value of the Lagrange multiplier it gives the possibility of approaching the 
ROHF MP theory [23]. The choice of a given value of the Lagrange multiplier 
is, however, arbitrary. 

In the MP perturbation theory it is assumed that the Hartree-Fock wave- 
function is a sufficiently good approximation to the exact wavefunction. If this 
condition is satisfied, the perturbational expansion converges rapidly and the 
second-order level already gives quite useful results. Otherwise, perturbation 
expansions converge very slowly or even not at all and lower-order approxima- 
tions deliver rather unreliable predictions. 

Unfortunately, there are a lot of cases where neither a restricted nor 
unrestricted single-determinant can represent the zeroth-order wavefunction and 
multiconfigurationat (MC) reference is necessary. It may be due to near-degener- 
acy effects. However, this is not the only case. It should be emphasized that the 
multiconfigurational nature of the reference wavefunction does not necessarily 
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mean quasi-degeneracy; very often it follows simply from strong electron correla- 
tion effects or from the requirement of correct description of the dissociation 
process. 

A general perturbation theory for the oase of multireference states was 
formulated over 20 years ago [24] in order to solve quasi-degeneracy problems. 
Several possible formulations of that approach were proposed [25-29]. All of 
them are based on the concept of an effective Hamiltonian [30]. They are not 
equivalent to the Moller-Plesset perturbation theory for the closed-shell state. In 
spite of the extensive theoretical studies, applications of these methods develop 
slowly [31]. The major drawback is known as the intruder state problem [32]. 

Some years ago an attempt was made to formulare second-order perturba- 
tion theory for complete active space SCF (CAS SCF) wavefunctions [33]. 
However, it may be considered as an approximation to the full treatment mostly 
due to restricted first-order interacting space used there. 

Recently, we have proposed a consistent way to generalize the Moller- 
Plesset perturbation theory to an arbitrary reference state [20]. The performance 
of our method has been demonstrated in several numerical applications with the 
zeroth-order wavefunction of a two-configuration (TC) type [20, 34]. This 
comprised, besides the traditional TC (equivalent to the generalized valence 
bond (GVB) with one correlated pair), the (2 × 2) complete-active-space 
(CAS), the RHF doublet and the excited singlet states. The results obtained were 
very good in all cases. They are comparable to the TC-based CI (singles and 
doubles) results, at much lower computational tost. Similar performance of a 
modified version of our method has been recently reported by Murphy and 
Messmer [35]. 

In this paper, we would like to describe in detail the generalized Moller- 
Plesset (GMP) perturbation theory for the simplest MC SCF, i.e., for the 
TC SCF reference wavefunction. We would like to analyze the importance of the 
different excitations in the perturbation treatment as well as the problem of 
diagonality of the one-electron Fock operator. These considerations will be 
illustrated by numerical results for the HF molecule. 

2. Theory 

As mentioned above, the proper choice of the H ° operator is one of the crucial 
steps in formulating perturbation treatment of the correlation energy. We have 
proposed to construct this operator, in analogy to the closed-sheU MP case, on 
the basis of the one-electron Fock-type operator: 

f = h + j - k .  (1) 

Here h denotes the bare nucleus Hamiltonian, and j and k are the Coulomb and 
exchange operators, respectively. For a reference wavefunction of the form: 

T O = ~ AKt« (2) 
K 

the j and k operators can be expressed in terms of the orbitals and CI 
coefficients: 

J = Z A2 ~ Jkk + Z AKALjk» (3) 
K k ~ K  K,L 
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In the first term the summations go over all Slater determinants ~ r  in the 
reference function and over all spin orbitals ~bk occupied in each ~~. The second 
term contains the sum over the pairs of determinants which differ by one spin 
orbital; ~t replacing ~b k. The exchange operator k is defined in an analogous 
wayL 

The elementary Coulomb and exchange operators are given as usual by: 

jkldP(1) = (q~k(2) Ir ~' 14~,(2))2q~(1) 
(4) 

kkAb(1) = (q~k(2) I r {~1 ] q~(2) )2 (~l (1). 

In a special case of the closed-shell reference function o u r f o p e r a t o r  defined 
above becomes the ordinary Fock operator for these states. For  this reason, one 
may consider f as a generalized Fock operator. 

Two important features of the f operator should be noted hefe. First of all, 
f is determined by a reference wavefunction alone but is independent of its 
particular orbital representation. Secondly, f is not diagonal in the orbital space 
for the general MC SCF stare. 

Let us consider now a decomposition of the configuration space for the 
perturbed wavefunction. It is divided into a set of the spin-adapted, orthogonal 
non-, singly-, doubly-, triply-, etc. substituted subspaces. The non-substituted 
subspace consists of  the reference wavefunction 710 alone. Each n-substituted 
subspace is generated by acting on the whole reference function 7 ~° with all 
possible products of n excitation operators E1 . . .  E, . . . .  En (where i denotes a 
pair of orbitals), and then it is orthogonalized to all lower subspaces. For  
example, the space of singles contains functions of the form Ers7 ~° orthogonal- 
ized to ~u0, doubles are given as Er, Etu 7 ~° orthogonalized to both 7 ~° and singles, 
etc. Note the internally contracted nature of the configuration stare functions 
(CSF) constructed in that way. The internal contraction [37, 38] brings a large 
saving in the CI method with negligible loss of accuracy [39]. In the expansion 
for perturbed wavefunction it greatly reduces a number of terms, at the cost of 
higher complexity of the individual terms. 

Finally, we would like to define the zeroth-order operator H ° in such a way 
that only double excitations will contribute to the first-order wavefunction, in 
analogy to the closed-shell MP PT. This can be achieved by appropriate 
projection of the n-electron generalized Fock operator: 

F= ~ f(i) (5) 
electrons 

on the set of all subspaces introduced above. This projection is given in the 
following form: 

H ° =  PoFPo + P«FP~ + PaFPa+" ", (6) 

where Po, Ps, Pa, etc. denote the projectors to the reference, singles, doubles, etc. 
subspaces. Once H ° is defined, the Rayleigh-Schrödinger perturbation theory is 
uniquely determined with the perturbation being V = H -  H °. Perturbation 

1 The definition of the Fock operator, in particular the exchange part of it, will be discussed in a 
forthcoming paper (J. A. van Lenthe, K. Wolinski, P. Pulay) 

The Fock operator introduced here has previously been used for other purposes. See for example 
[36] 
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expressions for the first-, second- and third-order energies can be written as: 

E ° =  ( ~ ° [ H ° { ~ ° )  

E' = < ~ °  I v[ ~o> = Er - E ° 
E 2 = (~BI [H[  7Y°) (7) 

E 3 =  < ~ l I H - E r [ ~ l > + g 2  

where Er = <~'°[HI ~0> is the reference energy. The coefficient vector for the 
first-order wavefunction is given by the matrix equation: 

C = - (H ° - E °) - ' V (8) 

with ( H ° - E ° ) i  « = (7~i[H ° -  E°[7-'j) and Vj = (~/'j] V] 7~°). The functions {~uj} 
belong only to the doubly-substituted subspace, if the reference is a CAS SCF 
function, or to the both singly- and doubly substituted subspaces for a general 
MC SCF reference state. Out method is also size-consistent [20, 34] for the 
size-consistent reference wavefunction, i.e., total energy of an ensemble of 
noninteracting subsystems is equal to the sum of individual subsystem energies, 
in each order of perturbation [34]. 

Perhaps, the most interesting feature of the generalized Moller-Plesset 
perturbation theory (GMP PT) described here is that the H ° operator is 
non-diagonal in the CSF basis set. This is of course the consequence of our Eq. 
(1) for the generalized Fock operator, which is not diagonal in the orbital space. 
Perturbation theory with non-diagonal zeroth-order Hamiltonian has not been 
regarded as practical. It was the major obstacle in formulating a perturbation 
theory for multiconfigurational reference state in analogy to the MP approach. 
In fact, even ordinary MP PT for the closed-shell wavefunction can be formu- 
lated in a space of noncanonical orbitals, with non-diagonal H °. It has been 
shown for localized orbitals [40-42] as well as for infinitesimal perturbations [43] 
that noncanonical MP PT is only slightly more expensive than the ordinary 
canonical variant. An iterative determination of the C vector in (8) does not 
create any problems. 

The general theory presented above is valid for any MC SCF reference state. 
It is convenient, however, to discuss various aspects of the theory in a possibly 
simple case. The simplest MC SCF wavefunction is a two-configuration (TC) 
one. Moreover, it is actually an important case since there are many molecules 
which can be described by a TC (GVB) wavefunction. Thus, the reference state 
considered now is: 

I[t0 = A1 qb I -t- A2~ß 2 (9) 

where configurations ~1 and ~z are given as: 

B, = ](ii j j  . . .)rn m) ,  q~2 = I( i?Jf  . . . ) n  fr). 

Here and further in the text i , j ,k ,  l , . . .  denote the core (internal, doubly 
occupied) orbitals, and m, n the two active ortes. The virtual (external) orbitals 
will be denoted by a, b, c, d, . . . .  Note, that the reference state of Eq. (9) is 
strictly equivalent to the (2 × 2) CAS SCF wavefunction since the latter may 
always be written as Eq. (9) by rotation of active orbitals [44]. 

The first-order interacting space contains only doubly-substituted functions 
obtained from Eq. (9) according to the procedure described above. After 
orthogonalizing all doubles of the form ErsEtu ~o to ~0 and singles, the final set 
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of functions used in the expansion of the first-order wavefunction is as follows: 
internal substitutions 

type I 
,mm (m~+7) 

iJ = O- eh2 

semi-internal substitutions 

a m  
type II ~g+l, 

a m  

ij 
a n  

~/+19 /j 
a n  

~e- i , ij 

a n  
type III 7J+1, . 

im 

a n  

i m  

type IV 7j_, a. 
l 

external substitutions 

type V 

type VI 

type VII 

1 (arh äm mä rha\~ 

=~ g+~+ O-+õ.)~ 
l(2amij ärh afft äm mä rfi;) 

= ~ \  + 2  t~ - +  ~J'~-+ U + /f + Cz 

l {aft än nä ~a'~ 
=2~g+ 0 + g+ 0)e' 

1 ( äù an an nä ù~j) 2 an + 2  ~-~-+ + + + q~l 
2\ /j ,J g 0 /f 
21(ab an na 

i~+~-  + + ~l im iff~ im 

( - ~a) 1 2 an an a~ än na 
= -  + 2  + +=- + + ~~ 

2 im t~f~ ¢~ tm irh 

eaó=(a6  äb)~, 
mm mth + film 

ab l ( a b  äb bä ba) tpo ~'+,,/j =~ /y+0+ g+0 

ab 
ij 

l ( 2 a b  2 äb ab äb bä ba) Tjo 
=~ 0.+ U+ i)-+O+ g+ 0 

( ~a) 7j+ l , ab 1 ab äb bä 
i m = 2  irin +im = + irh + irn q~l 

( ~a) ab 1 ab ä6 ab äb bä 
~ - l , .  = -  2 + 2  + +~- + + ~~ 

tm 2 im tSfi irh tm ith irn 

( ~a) 7j+1 ' ab 1 ab äb bä -3v in ~2 
i n : - 2  i~ + Tn+ i~ 

in = in + 2 ~ + i~ + Tn + iß + Tn ~2 
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t~ 
The expression _ ~ means that spin orbitals (r, ~) in ~ are replaced by spin 

rs  
orbitals (t, ü). The subscripts + 1 and - 1  denote the different spin coupling of 
the electron pair i.e., singlet and triplet coupling, respectively. The partition of 
the first-order interacting space into the internal, semi-internal and external 
substitutions has been introduced here, depending on the number of virtual 
orbitals involved in the excitations [33]. 

There is one type of excitations, namely type IV, which perhaps requires 
some explanation. These functions arise from the two doubles: 

EmiEam 71° = - A i E a i q ~ l  = - A  1 + Cbl 

and 

(ai ~) EùiEaùtP ° = - A 2 E a i c l )  1 = - A  2 d- t~ 2 

orthogonalization to the single substituted functions: 

(a ä) (a ~) E~i ~Po = ~p + , a = A1 -}- I~ 1 -Je A 2 -}- ä ~2 
i 

yields the considered function of type IV. Note that the functions of type VI are 
the only ones which appear in the closed-shell MP PT. 

3. Non-diagonality of the Fock operator 

The GVB MP perturbation theory described above is based on the non-diagonal 
H ° operator and the first-order wavefunction must be deterrnined iteratively in 
order to avoid solving a large system of equations. There is no problem with 
convergence and usually 6 steps are enough to reach the accuracy of 10 -6 for the 
coefficient vector C in Eq. (8). However, it would not be needed at all if only the 
diagonal terms o f f  were included in F defining H °. 

Truncation of the Fock operator to a diagonal form [33, 45, 46] is an 
attractive idea since it simplifies the whole procedure. However, the question 
about the importance of non-diagonal terms appears. 

We have performed the calculations of the potential energy curve of the HF  
molecule with both a non-diagonal and diagonal f.  The results are presented in 
Table 1. At a very short distance the non-diagonal Fock operator gives more 
correlation energy than the diagonal one. Around the minimum (0.917 ~)  the 
second-order energies are almost the same in both cases, and then, at the larger 
H - F  separations, the potential curve corresponding to the diagonal f l i e s  below 
that with a full operator. The oft-diagonal Fock elements shift the potential 
curve of HF to the shorter internuclear distances. This is, however, not a general 
trend. In the case of BH for instance, the energy obtained with a full f i s  always 
lower than the orte with a diagonal approximation. Table 1 shows an artificial 
effect: the very flat maximum on the potential curve at the large distance when 
the diagonal Fock operator is used. 

The influence of the oft-diagonal elements of the Fock operator on the 
equilibrium bond length and dipole moment of HF  is significant as it may be 
seen in Table 2. First of all there is quite a difterence in the equilibrium bond 
lengths being 0.0072 ~ for the larger 6-311 + +(3df,  3pd) basis set. It makes R e ,  
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Table 1. Non-diagonality of  the Fock operator in GVB MP2. Potential energy curves for the HF  
molecule with full and diagonal f a  

R GVB energy GVB MP2 energy 
(/~) (a.u.) full diagonal 

6-311 (d ,p)  basis set 
0.667 -99.93177807 -100.14600330 -100.14325738 
0.717 -99.99477836 -100.20956460 -100.20741101 
0.767 - 100.03388549 -100.24906321 -100.24906328 
0.817 -100.05634173 - 100.27173588 - 100.27173599 
0,867 - 100.06720080 - 100.28263748 - 100.28257239 
0.917 - 100.07002283 - 100.28533104 - 100.28596373 
0.967 - 100.06733920 - 100.28235142 - 100.28362387 
1,017 - 100.06096377 -100.27551596 -100.27734130 
1,517 -99.95947865 - 100.16218360 - 100.16469639 
2,017 -99.90904592 - 100.09843786 -100.09953473 
3 ~ 0 1 7  -99.89378538 -100.07744308 -100.07815476 
4.017 -99.89325465 -100.07667768 -100.07739081 
8.017 -99.89322848 - 100.07663621 - 100.07735318 

15.017 -99.89322848 -100.07663616 - 100.07735359 
25.017 -99.89322848 - 100.07663616 -100.07735366 
35.017 -99.89322848 - 100.07663615 - 100.07735367 
50.017 -99.89322848 -100.07663615 - 100.07735367 

6-311+ +(3df ,  3pd) basis set 
0.667 -99.94354437 -100.21612070 -100.21205694 
0.767 -100.04492715 -100.31829791 -100.31545132 
0.817 - 100.06729980 -100.34096106 -100.33887646 
0.867 - 100.07814983 - 100.35198209 - 100.35071010 
0.917 -100.08100018 -100.35485409 -100.35439901 
0.967 - 100.07834675 - 100.35205908 - 100.35237530 
1.017 - 100.07196871 - 100.34537590 - 100.34638066 
1.517 -99.96711296 -100.22838464 - 100.23091479 
2.017 -99.91375792 - 100.15712164 - 100.15822580 
3.017 -99.89752825 -100.13182968 - 100.13264120 
4.017 -99.89694013 -100.13077695 -100.13160872 
8.017 -99.89690159 -100.13068152 -100.13152066 

15.017 -99.89690158 - 100.13068107 - 100.13152085 
25.017 -99.89690158 -100.13068107 - 100.13152094 
35.017 -99.89690158 - 100.13068107 -100.13152095 
50.017 -99.89690158 - 100.13068107 - 100.13152096 

a In all calculations the Pople's triple-zeta-type basis sets have been used (see J Chem Phys 80:3265 
(1984)). All electrons in the H F  molecule have been correlated 

c o m p a r e d  t o  t h e  e x p e r i m e n t a l  v a l u e  o f  0 . 9 1 6 8  Ä ,  l o n g e r  b y  0 . 0 0 4 7  Ä f o r  d i a g o n a l  

f ,  w h i l e  w i t h  a f u l l  f i t  is  t o o  s h o r t  o n l y  b y  0 . 0 0 2 5  ~ .  T h u s ,  t h e  e r r o r  i n  Re i s  

a l m o s t  t w i c e  a s  b i g  a n d  h a s  t h e  o p p o s i t e  s i g n  i f  t h e  F o c k  o p e r a t o r  is  t r u n c a t e d  

t o  a d i a g o n a l  f o r m .  A t  t h e  e q u i l i b r i u m  g e o m e t r i e s  c o r r e s p o n d i n g  t o  a f u l l  a n d  

d i a g o n a l  f t h e  v a l u e s  o f  t h e  d i p o l e  m o m e n t  d i f f e r  b y  a b o u t  0 . 0 3 0  D e b y e  w i t h  

b o t h  s m a l l  a n d  l a r g e  b a s i s  s e t s .  A g a i n  t h e  l a r g e r  b a s i s  s e t  r e s u l t  is  c l o s e r  t o  t h e  

e x p e r i m e n t a l  v a l u e  w i t h  a f u l l  f t h a n  w i t h  a d i a g o n a l  o n e .  W i t h  a l a r g e  b a s i s  s e t  

a t  Re = 0 . 9 1 4 3 / k  t h e  c o n t r i b u t i o n  f r o m  o f t - d i a g o n a l  e l e m e n t s  o f  f is  e q u a l  t o  
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Table 2. Non-diagonality of the Fock operator in GVB MP2. The equilibrium bond length (Re), 
dissociation energy (De) and dipole moment (Dm) of the HF molecule a 

Method Re De Dm 
(Ä) (kJ/mol) (Debye) 

6-311 (d, p) basis set 
GVB 0.9143 464.19 1.890 
GVB MP2 (diag) 0.9184 547.71 1.874 
GVB MP2 (full) 0.9127 547.99 1.903 

(1.866) b 
6-311 + +(3df, 3pd) basis set 
GVB 0.9147 483.37 1.823 
GVB MP2 (diag) 0.9215 585.22 1.799 
GVB MP2 (full) 0.9143 588.59 1.833 

(1.789) b 
experiment c 0.9168 590.8 1.819 

a Dipole moment has been evaluated by numerical differentiation of the energy with respect to the 
external electric field 
b Neglecting oft-diagonal elements of the Fock operator 
c From: Huber KP, Herzberg G (1979) Constants of diatomic molecules. Van Nostrand Reinhold, 
NY 

0.044 Debye. This significantly reduces the error from - 0 . 3 0  to +0.014 Debye 
compared to the experimental value of 1.819 Debye. The dipole moment  of  H F  
as a function of the H - F  separation for both a non-diagonal and diagonal f i s  
shown in Table 3. In both cases the dynamical electron correlation shifts the 
maximum of these functions to the longer internuclear distances. At large distances, 
when there is essentially no interaction between the separated atoms, the use of  
a diagonal f leads to evidently wrong (too high) values of  the dipole moment.  

The dissociation energy of H F  is only slightly affected by non-diagonality of  
f.  However, the results in Table 2 show that the use of  the full Fock operator is 
again preferable. An excellent agreement with experiment might be noted here: 
the dissociation energy obtained from GVB MP2/6-311 + + G(3df, 3pd) calcula- 
tions is too low only by 2.2 kJ/mol (e.g. ~0.5  kcal/mol). It  should be empha- 
sized, however, that even with very large basis sets, there is quite significant basis 
set superposition error in H F  [47], which balances the remaining correlation 
error. The very good agreement between the GVB-MP2 and experimental values 
of  the dissociation energy may be a result of  error cancellation like in the 
ordinary MP PT [47]. 

4. Correlation effects in terms of different excitations 

In the earlier at tempt to formulate MP PT for the CAS SCF wavefunction by 
Roos et al. [33] only one type of  excitations has been included, namely the 
external ones. The results, however, were not very encouraging, especially for 
dissociation energies. It  was pointed out [33] that the lack of semi-internal 
substitutions is responsible for this. That  conclusion has been fully confirmed by 
Werner [48] who showed that these excitations were very important  for correct 
description of a potential surface. 
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Table 3. Non-diagonality of the Fock operator in GVB MP2. The 
dipole moment of HF as a function of the internuclear distance 
(6-311G+ +(3df, 3pd) basis set) 

R Dipole moment (Debye) 
(Æ) GVB GVB MP2 GVB MP2 

full diag 

0.767 1.618 1,599 1.577 
0.817 1.690 1,677 1.646 
0.867 1.760 1,757 1.718 
0.917 1.826 1,837 1,792 
0.967 1.886 1.918 1.870 
1.017 1.939 1.999 1.952 
1.117 2.017 2.154 2.121 
1.317 2.018 2.385 2.401 
1.417 1.927 2,424 2.461 
1.517 1.779 2.386 2.435 
1.617 1.587 2.265 2,316 
1.717 1.371 2.069 2.114 
2.017 0.755 1.278 1.300 
3.017 0.056 0.088 0.136 
4.017 0.008 0.009 0,079 
5.017 0.003 0.003 0.090 
7.017 0.001 0.001 0.124 

In our perturbation approach all three types of  excitations are included. We 
have performed the calculations for hydrogen fluoride which show how impor- 
tant they are for the dissociation energy and dipole moment.  The results 
obtained with the small 6-311G(d, p) and large 6-311G + + (3df, 3pd) basis sets 
are presented in Table 4. 

As one could expect, the dynamical electron correlation energy is dominated 
by contribution from the external excitations. At the equilibrium geometry of 
H F  for a given basis set, they constitute about 80% of the total MP2 energy, 
while the semi-internals contribute only ~ 2 0 % .  However, increasing the inter- 
nuclear distance to infinity, the total contribution from the semi-internals 
decreases by more than half, while those from the externals only by about 6%. 
Finally, the difference E2(R_) -E2(Re), i.e., the dynamieal correlation part  of  
the dissociation energy, contains twice as rauch contributions from the semi-in- 
ternals as from the externals (in the larger basis set). Thus, the semi-internal 
excitations are essential for the dissociation process. 

The dynamical electron correlation has only an insignificant effect on the 
dipole moment  of  HF.  The value obtained at the GVB/6-311G+ +(3df ,  3pd) 
level is very dose to the experimental one (see Table 2). It is important,  however, 
to realize that this small effect is a result of  cancellation of different contributions 
with an opposite sign. Indeed, for the large basis set, the internals and semi-inter- 
hals give the contribution of +0.120 Debye. On the other hand, the external 
excitations contribute as much as -0 .130,  giving the final result equal to only 
-0 .010  Debye, as shown in Table 4. In this case, the reference dipole moment  
(from GVB) is equal to 1.823 Debye. The neglect of  the semi-internal (and 
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Table 4. Dynamical electron correlation contributions from different excitations to the correlation 
enelrgy, dissociation energy, and dipole moment. The HF molecule at the equilibrium geometry: 
Re = 0.9127 A for 6-31iG(d, p), Re = 0.9143 A for 6-311G+ +(3df, 3pd) 

Dynamical electron correlation contributions 
Internal Semi-internal External Total MP2 

correlation energy (in a.u.): 
6 - 3 1 1  -0.00085577 --0.04559891 --0.16887112 --0.21532580 
(d, f) (0.4%) (21.2%) (78.4%) (100%) 
6-311 + + -0.00081374 -0.04984585 -0.22319725 -0.27385685 
(3dl, 3pd) (0.3%) (18.2%) (81.5%) (100%) 

dissociation energy (in kJ/mol): 
6-311 2.25 70.22 11.34 83.80 
(d, p) (2.7%) (83.8%) (13.5) (100%) 
6-311 2.14 67.50 35.58 105.22 
(3df, 3pd) (2.0%) (64.2%) (33.8) (100%) 

electronic dipole moment (in Debye): 
6-311 + 0.009 + 0.073 
(d, p) 
6-311++ +0.009 +0.111 
(3df, 3pd) 

--0.095 --0.013 

-0.130 --0.010 

internal) contributions would increase the total dipole moment from 1.833 to 1.953 
Debye, which is much too high compared to the experimental value of 1.819 Debye. 

5. Discussion 

This paper discusses the problem of non-diagonality of the Fock operator which 
is introduced in our perturbation theory for the MC SCF reference state. It has 
been shown that the oft-diagonal elements of r a r e  very important for the bond 
length and dipole moment of HF. In this case, an external perturbation (a change 
in a bond distance or an electric field) can rotate orbitals, moving some 
contributions from diagonal to oft-diagonal terms. 

Another problem considered in this paper concerned the importance of different 
excitations in the GVB-MP2 correlation treatment. It has been shown that the 
semi-internal excitations are essential for correct description of a potential surface. 
Indeed, their contributions to the dissociation energy of HF constitute over 60% 
of the total second-order correlation correction in the larger basis set limit. With 
a smaller basis set they are even more important. 

Although the dipole moment of HF at the equilibrium geometry is not affected 
significantly by a dynamical correlation, all three kinds of excitations are still very 
important. That is because their quite significant contributions have the opposite 
sign and cancel each other, giving a very small final effect. 

The results presented in Table 2 concern the equilibrium properties of the HF 
molecule obtained with two basis sets of very different quality. It is interesting, 
however, to examine the changes appearing in results when the quality of the basis 
set improves systematically. For this purpose we have performed a series of cal- 
culations with the different basis sets from 6-31 IG(d, p) to 6-31 I G +  + (3df, 3pd). 
The full, non-diagonal Fock operator has been used in the GVB MP2 method. 
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Table 5. Basis set dependence of the equilibrium bond lengths (Re) dissociation energies (De) and 
dipole moment for HF in GVB MP2 

Basis set Method Energy Re De Dm 
(a.u.) (.Ä.) (kJ/mol) (Debye) 

6-311 GVB -100.07003020 0.9143 464.19 1.890 
(d, p) GVB MP2 -100.28535273 0.9127 547.99 1.903 

6-311 GVB -100.07091487 0.9160 466.46 1.850 
(2d, p) GVB MP2 - 100.30844491 0.9172 550.10 1.887 

6-311 GVB -100.07295313 0.9140 471.81 1.804 
(2d, 2p) GVB MP2 - 100.31309303 0.9137 562.31 1.801 

6-311 + + GVB - 100.07629289 0.9156 472.96 1.938 
(d, p) GVB MP2 - 100.29678418 0.9157 562.77 1.970 

6-311 + + GVB - 100.07899968 0.9155 478.26 1.921 
(dl, pd) GVB MP2 - 100.32558281 0.9123 583.96 1.941 

6-311 + + GVB - 100.07923267 0.9167 478.80 1.900 
(2df, pd) GVB MP2 - 100.34568161 0.9175 579.05 1.951 

6-311 + + GVB - 100.08008997 0.9155 481.05 1.847 
(2df, 2pd) GVB MP2 -- 100.34770154 0.9155 584.35 1.863 

6-311 + + GVB - 100.08067676 0.9149 482.50 1.828 
(3df, 2pd) GVB MP2 - 100.35417727 0.9148 586.79 1.851 

6-311 + + GVB - 100.08100585 0.9147 483.37 1.823 
(3df, 3pd) GVB MP2 - 100.35486249 0.9143 588.59 1.833 

The results presented in Table  5 demonst ra te  an  almost  smooth convergence 
of the dissociation energy at bo th  the GVB and  GVB MP2 levels. In  this case the 
dynamical  correlat ion always improves the GVB results and  for the largest basis 
set employed yields a very good final value. 

In  contrast ,  results for the bond  length and dipole m o m e n t  of H F  already 
accurate at the GVB level, are slightly deteriorated by the second-order  correla- 
t ion even for the largest 6 - 3 1 1 G +  +(3d f ,  3pd) basis set. The second-order  
dynamical  correlat ion increases the dipole m o m e n t  of H F  which is already too 
high at the GVB level, while the value of the b o n d  length oscillates. 

Fur ther  extension of  the basis set by addi t ion of the fourth set of  d funct ions 
on the fluorine a tom brings an  improvement  in the GVB MP2 treatment .  The 
bond  length of H F  changes from 0.9150/k of the GVB value to 0.9153/k of 
GVB MP2, and dipole m o m e n t  f rom 1.810 (GVB) to 1.820 Debye (GVB-MP2) .  
The latter agrees very weil with the experimental  value of 1.819 Debye. 

It  should be stressed, however, that  bo th  a dissociation energy and dipole 
m o m e n t  are calculated here as two-point  energy differences and  the very good 
agreement  between the GVB MP2 and  experimental  values follows from a 
cancellat ion of errors. The equi l ibr ium bond  length of H F ,  as a one-poin t  energy 
calculation,  is still affected by an  error. 
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